

Sample Brief Course Description	
Course title	Modelling and Simulation of Physiological Systems
Course code	BME 241
College	Engineering
Department / Program	Biomedical Engineering
Year/ Level	3/6
Course Type	A. University College Department Others B. Required Elective
Credited Hours	3
Contact Hours	(LT: 2, LB: 2, TR: 0)
Pre-requisites (if any)	BME 240
Co-requisites (if any)	

	Basics of physiological control systems
Course description	Systems Analysis, examples of physiological control systems,
	differences between engineering and physiological control systems.
	Generalized system properties, mathematical approach, electrical
	analogs, linear models, lung mechanics, muscle mechanics, distributed
	parameter versus lumped parameter models
	Analysis of Physiological Models
	Static and dynamic analysis of physiological systems: regulation of
	cardiac output, blood glucose regulation, chemical regulation of
	ventilation, electrical model of neural control mechanism
	Modelling of Circulatory System
	Circulatory System: Physical, chemical and rheological properties of
	blood, problems associated with extra corporeal blood flow, dynamics
	of circulatory system.
	Modelling of Regulatory System
	Thermal Regulatory System: Parameters involved, Control system
	model etc. Biochemistry of digestion, types of heat loss from body,
	models of heat transfer between subsystem of human body like skin
	core, etc. and systems like within body, body, environment, etc.
	Modelling of Filteration In Human Body
	Ultra-Filtration System: Transport through cells and tubules, diffusion,
	facilitated diffusion and active transport, methods of waste removal,
	counter current model of urine formation in nephron, Modeling Henle's
	loop.
Course Main Objectives	•
	To impart knowledge on 1. Basic ideas related to modeling.
	2. Different modelling techniques of physiological systems.
	3. Various regulatory systems of the human body.
Learning Outcomes	Knowledge and Skills:
	1. Assemble the various concepts in modelling of circulatory system.
	Skills:
	1. Analyze the concepts of modelling
	2. Differentiate the dynamics and static characteristics of physiological
	systems
	3. Design and perform the modelling for physio thermo regulatory
	systems
	4. Create various models for human filtration system
	5. Evaluate the mass-balance concept for biological system
	Values:
	1. Communicate effectively and write lab report.
	1. Communicate effectively and write lab report.

