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ABSTRACT
Breast cancer is one of the foremost reasons of death among women in the world. It has the largest mortality rate compared to
the types of cancer accounting for 1.9 million per year in 2020. An early diagnosis may increase the survival rates. To this end,
automating the analysis and the diagnosis allows to improve the accuracy and to reduce processing time. However, analyzing
breast imagery’s is non-trivial and may lead to experts’ disagreements. In this research, we focus on breast cancer histopatho-
logical images acquired using the microscopic scan of breast tissues. We present combined two deep convolutional neural net-
works (DCNNs) to extract distinguished image features using transfer learning. The pre-trained Inception and the Xceptions
models are used in parallel. Then, the feature maps are combined and reduced by dropout before being fed to the last fully con-
nected layers for classification. We follow a sub-image classification then a whole image classification based on majority vote
and maximum probability rules. Four tissue malignancy levels are considered: normal, benign, in situ carcinoma, and invasive
carcinoma. The experimentations are performed to the Breast Cancer Histology (BACH) dataset. The overall accuracy for the
sub-image classification is 97.29% and for the carcinoma cases the sensitivity achieved 99.58%. The whole image classification
overall accuracy reaches 100% by majority vote and 95% by maximum probability fusion decision. The numerical results showed
that our proposed approach outperforms the previous methods in terms of accuracy and sensitivity. The proposed design allows
an extension to whole-slide histology images classification.

© 2021 The Authors. Published by Atlantis Press B.V.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

Cancer can be described as uncontrolled replication of abnormal
cells forming lumps. These tumors can be benign or malignant. The
benign tumors remain localized and grow slowly. The malignant
tumors invade the adjacent structures and may destroy other parts
of the body.

Breast cancer (BC) is the most common type of cancer among
women and Invasive Ductal Carcinoma (IDC) is the most common
type of BC, presenting 80% of all BC diagnoses [1]. IDC are tumors
that start in milk ducts and then invades the tissue outside the ducts.
The symptoms of BC vary from person to person. But, there are
significant warning signs such as pain, lumps in the breast or the
underarm, and changes in the nipple area or the breast skin tissue.

The early detection of BC can save lives. The Computer-Assisted
Diagnosis (CAD) system is used in the diagnosis and analysis of
the suspected areas in order to assist the pathologists. The CAD
allows to reduce human error probability and to fasten the analysis
process. In fact, the manual interpretation requires high qualifica-
tion and consumes time and effort. The CAD will not suppress the
human role but it provides a second opinion that can enhance the
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analytical and predictive capabilities. A consistent diagnosis is very
critical in these situations where false positive can also be as harm-
ful as false negative. Different techniques are used for BC diagnosis
such as Mammography, Tomography, Ultrasound, Magnetic Res-
onance Imaging (MRI), and biopsy. In biopsy, a piece of affected
breast tissue is extracted using surgery or fine needle aspiration
and is examined under the microscope. The commonly used stain-
ing protocols in histopathology is hematoxylin and eosin (H&E).
Hematoxylin binds deoxyribo nucleic acid (DNA), and it dyes pur-
ple/blue color to the nuclei and Eosin binds proteins and it dyes
pink color to cytoplasm. A digital camera is mounted to acquire the
histopathological views which are then combined into one image
called whole slide image (WSI). As reported in [2] the average accu-
racy of diagnostics performed by pathologists is 75%.

Computer vision techniques and machine learning algorithms offer
more accurate classification based on the analysis of histopatholog-
ical images.

The histological assessment has to deal with several challenges.
H&E stained sections present a wide variety due to the differences
among patients, different staining protocols, and different scan-
ning skills. BC cells come also with a wide diversity of sizes, densi-
ties and shapes. Deep convolutional neural networks (DCNNs) are
able to extract both global and local contextual information, and
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aggregate multi-scale features. Moreover, the number of available
histopathological images for classification tasks is limited due to
data privacy issues and high acquisition cost. But, DCNNs require
a large number of training samples to be effective and may other-
wise suffer from overfitting. In this work, we propose to use transfer
learning with two pre-trained neural networks in order to overcome
the problem of overfitting during the training phase and improve
classification performance. Furthermore, we use a data augmenta-
tion method in order to increase the number of training images.
Even though the number of BC histopathological images is limited,
the concatenation of two pre-trained DCNNs with the use of aug-
mented data achieve together precise and accurate multi-label BCs
classification.

Recent research demonstrated that multiple DCNNs performs bet-
ter than a single DCNN [3–5]. Thus, two DCNNs are trained
independently and their feature vectors are combined by a concate-
nation and further processings to simplify the model complexity. In
the literature, when multiple DCNNs are used, a serial architecture
is used. Conversely, the feature vectors of the Xception and Incep-
tion Resnets are concatenated to form one-dimensional feature
vector.

In Inception Resnet V2, filters with different sizes operate on the
same level. Large kernel represents globally distributed information
while small kernel represents locally distributed information. This
type of neural network is mainly depth-based, using high number of
sequential convolution blocks. Even if deep networks has consider-
ably improved representational capacity, they still suffer from fea-
ture reuse and gradient vanishing problems. Recent research works
emphasized the important role of width in deep learning and argued
that sufficiently wide hidden layers are necessary, to guarantee effi-
cient feature extraction [6]. The Xception learning model, based
on inception blocks, makes the network wider. The output of con-
volution block filters, followed by the pointwise convolution, are
concatenated. We propose an aggregation approach where we com-
bine features from Inception Resnet and Xception together. This
adopted ensemble learning focuses both on depth and width. Thus,
it reduces the variance of the built neural network and enhances
the generalization of machine learning. Combining the features of
two different models enhances the diversity of the ensemble neural
network. Dietterich [7] gave the reasons why the ensemble learn-
ing boosts the generalization capacity. First, the training data might
be insufficient for choosing only one learner, which is the case for
histopathological images, where a small amount of data is avail-
able. Second, combining different models extends the representa-
tion of the search space. In our work, the different distributions of
histopathological images and the great similarity between benign
and malignant tumors make the classification challenging for one
neural network [8]. Combining Inception Resnet and Xception
increases the representation of the search space.

The remainder of this study is organized as follows. In
Section 2, we present some algorithms related to BC detection. In
Sections 3, we describe the contributions of our research and the
material used to undertake the tests. In Section 4, we describe our
proposed method of concatenated neural convolution networks.
In Section 5, the experimental results show the performance of our
approach. We conclude this paper in Section 6.

2. RELATED WORKS

A study conducted by Carvalho et al. [9] proposed the use of indexes
based on phylogenetic diversity. This concept identifies the distri-
bution of species and the relationships between them in a tree-based
structure. The species are the gray levels of the image; an individual
is the number of pixels of a specific species; and the distance is the
number of edges between two species. The authors used the BACH
dataset with four classes of invasive carcinoma, in situ carcinoma,
normal tissue, and benign lesion. Four classifiers: Support Vector
Machine (SVM), Random forest, Multi Layer Perceptron (MLP),
and Xgboost were evaluated. The authors reported an accuracy of
95.0% for the classification of the four classes. A set of three fea-
tures: nuclei, color regions and textures was considered in [10] in
order to build a feature vectors. The performances of several clas-
sifiers such as SVM quadratic kernel, k-nearest neighbors (kNN)
Cubic, and AdaBoost tree were compared for four severity levels of
BC. Their approach achieved 85% of accuracy using convolutional
neural network (CNN), SVM, and a majority voting approach.

The work proposed by Toğaçar et al. [11] suggested a deep learn-
ing model (Breast-Net) based on CNNs. The convolutional block
attention module, including channel attention module and the
spatial attention module, localized the key zones in the histopatho-
logical image. The Residual block allowed to overcome overfit-
ting and underfitting problems in the gradients. The hypercolumn
technique allowed to use the features of the preceding layers. The
authors used dataset BreakHis which includes two groups: benign
tumors and malignant tumors.

The dataset currently contains four types of benign breast tumors:
adenosis (A), fibroadenoma (F), phyllodes tumor (PT), and tubu-
lar adenoma (TA). The malignant tumor classes are ductal carci-
noma (DC), lobular carcinoma (LC), papillary carcinoma (PC), and
mucinous carcinoma (MC). The proposed deep learning model was
compared to AlexNet, VGG-16, and VGG-19 models and reported
an average classification success 97.78% for benign tumors and data
was 97.78% and 96.41% for malignant tumors. The authors of [12]
proposed to reduce the computational time of the CNN model by
reducing the size of high-resolution histopathological images. A
2-level Haar wavelet is used for image decomposition. The pro-
posed method achieved an multi-class accuracy rate of 91% on
ICIAR 2018 data set and 96.85% on BreakHis data set. Transfer
learning based on CNN is a promising solution to deal with the
limited number of available annotated BC histopathology images.
The generalization performance of CNN can be enhanced by
double-step transfer learning for feature extraction. This model was
developed in [13], where the classification is performed using inter-
active cross-task extreme learning machine (ICELM). The pro-
posed model reported an average accuracy rate of 98.18% using the
BreaKHis database.

Another deep learning model based on the Fully Convolutional
Network (FCN) and Bidirectional Long Short Term Memory
(Bi-LSTM) was proposed by Budak et al. [14]. The FCN encoder,
based on the pre-trained AlexNet model, helped to directly handle
high-resolution histopathological images, allowing variable input
sizes. The proposed model reported an average accuracy rate of
94.97% using the BreaKHis database.
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Wahab et al. [15] focused on the mitotic count which refers to the
number of cells in division, part of the Nottingham Histological
scoring system. The aggressivity of the tumor is proportional to
the number of cells that are dividing. The number of non-mitoses
is significantly larger than the number of mitoses. The proposed
approach dealt with the problem of class biasness and used the
blue ratio histogram-based k-means in order undersample the non-
mitose class. The classification is based on CNN. Similarly, the
authors of [16] proposed to overcome the problem of data imbal-
ance and prevent overfitting by using combining boosting trees
classifier and inception network.

The BC classification approaches usually uses manually cropped
small images representing the regions of interest. Gecer et al.
proposed to analyze the WSIs that contain several areas with
different structural anomalies. FCN provides a saliency map by
identifying the region of interest. The goal is to focus only on criti-
cal regions and avoid screening benign regions. This map is input to
CNN for classification. The proposed approach achieved an accu-
racy rate 55% while the pathologists achieved an accuracy rate of
65.44% for the 5 considered classes: non-proliferative changes, pro-
liferative changes, atypical ductal hyperplasia, DC in situ, and IDCa.
The same problem was investigated by Priego-Torres et al. [4] who
used fully connected Conditional Random Field (CRF) to merge the
classification results of the different patches. Similarly, the authors
of [17] considered WSIs while focusing only on the detection of
IDC. They used a transfer learning approach based on ResNet and
DenseNet pre-trained CNN models. The dataset was collected from
Cancer Institute of New Jersey and Hospital of the University of
Pennsylvania and manually annotated by expert pathologists.

Instead of examining all patches, the authors of [18] proposed to
focus on selected nuclei patches, which are extracted using Lapla-
cian blob detector algorithm. The features are extracted using
CNN and image-wise classification is performed using patch prob-
ability decision method and patch feature fusion. The proposed
approaches achieved an accuracy rate of 96.66% on the publicly
available BreaKHis dataset.

The majority of the works based on machine learning methods for
the detection and the classification of BC used supervied learn-
ing. Alirezazadeh et al. [8] proposed an unsupervised domain
adaptation method. Their purpose is to overcome the mismatch
between the training set and the test set and to deal with the sim-
ilarity between malignant tumors and benign tumors. A symmet-
ric transformation based on the correlation between benign and
malignant feature vectors is used to generate discriminative infor-
mation, exploited for binary classification. Similarly, the authors of
[19] proposed a weakly supervised method by exploiting weakly
annotated data set. The pathologists mark the centroid pixel, rather
than all the pixels belonging to a mitosis.

The classification can be based on the segmentation of the cell
nuclei. The authors of [20] considered the problem of overlapping
nuclei. The developed deep learning model based on CNN simulta-
neously captures the interval between overlapping nuclei, the fore-
ground, and the central location of each nucleus. These features are
used by the he Marker-controlled Watershed to split the overlapping
nuclei. The proposed architecture outperformed four CNN-based
semantic segmentation methods, including FCN8s, Holistically-
nested Edge Detection (HED), U-net, and SharpMask. The problem
of touching and overlapping nuclei is addressed in [21] where the

authors proposed an improved U-net using atrous spatial pyramid
pooling for binary classification (nuclei and non-nuclei). The over-
lapping nuclei are split using an accelerated concave point detection
algorithm.

3. CONTRIBUTIONS AND MATERIAL

3.1. Contributions

The main contributions of our work are summarized as follows:

• We use transfer learning for BC diagnosis based on
histopathological images. We aim to improve the performance
of learning instead of developing a new model and overcoming
the problem of limited available dataset.

• We aim to provide a complete classification that takes into
account four cases of malignancy: normal, benign, in situ, and
invasive cancer.

• We develop a model based on parallel convolutional neural
networks and combined deep features, to consolidate the
machine learning training process. Previous works are based on
stacked serial machines. In this novel architecture, we assembly
the architecture of two conventional networks: Inception and
Xception models. To the best of our knowledge, there is no
existing researches presenting this architecture.

3.2. Dataset

We considered breast tissue biopsies stained with hematoxlin and
eosin [22]. Breast tissue biopsies allows the pathologists to histolog-
ically assess the microscopic structure and elements of the tissue.
During the biopsy, the tissue is stained with H&E and the nuclei are
distinguished from the parenchyma. Therefore, the abnormalities
can be assessed and categorized. Benign abnormalities represent
non-malignant changes in normal structures of breast parenchyma.
Malignant abnormalities are classified as in-situ carcimonia and
invasive carcimonia. In the in-situ lesion, the cells are restrained
inside the mammary ductal-lobular system. Cells are spread beyond
the ducts in the case of invasive carcimonia. The BACH dataset
was made available through the Grand Challenge on BC Histol-
ogy images. It contains microscopy images annotated by expert
pathologists. The dataset includes 400 images collected from dif-
ferent patients and presenting with four classes: Normal, Benign,
In situ carcinoma and Invasive carcinoma. The images are 2048 by
1536 pixels, with spatial resolution 0.42 × 0.42 µm. The images were
acquired using a Leica DM 20000 Led microscope and Leica ICC50
HD camera. Further description for the dataset is available in [23].

4. METHODOLOGY

In this section, we propose the new framework for the classifica-
tion of histological images. The architecture is based on transfer
learning using Xception and Inception Resnet. The two pre-trained
convolutional neural networks, named backbone 1 and backbone
2 are used without the last fully connected layer. Their role is to
perform feature extraction. The produced down sampled feature
maps are dense presentations of the input images. The features are
fed into a Global Average Pooling (GAP) layer. GAP processes a
dimension reduction on feature maps and prepares the model for
the final layers. The two outputs are concatenated and proceeded by
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the dropout layer and then the last dense layer. The first part acts
as encoder and provide lower resolution image representation. The
remaining part, is the decoder.

Conceptually, the approach is based on:

• Initial preprocessing for image normalization and
enhancement.

• Image subdivision based on a regular grid.

• Image augmentation.

• Feature extraction based on transfer learning using two
backbones.

• Sub-image classification.

• Image classification by majority vote and maximum probability.

The block diagram of the proposed approach is shown in Figure 1.
Each step will be detailed in the following sections.

4.1. Data Preprocessing, Patching and
Augmentation

4.1.1. Preprocessing

Histological images show inter-images variability regarding con-
trast and color. Image normalization may improve the system
robustness for the training stage as well as the prediction stage. Since
staining, acquisition, and digitization process are performed in dif-
ferent conditions and laboratories, histopathological may show het-
erogeneity. The idea behind the normalization is to allow a robust
classification framework and to avoid learning outfitting. We pro-
posed a two-stage preprocessing based on Retinex illumination
and the reflectance correction and then a histogram-based contrast
enhancement technique.

The first preprocessing is based on the Retinex theory developed by
Land and Mc-Cann in [24]. Retinex modelizes the visible disparity

between the lightness perceived by the human eye and the absolute
lightness incident on the eye. Experiments show that the human
eye perceives relative lightness in local areas [25]. To achieve con-
trast enhancement, a logarithmic algorithm maps intensity using
a response curve that simulates human eyes. The second prepro-
cessing is an image normalization based on histogram technique.
We apply a contrast histogram equalization to each color compo-
nent [10]. Processing a global histogram equalization after contrast
enhancement produces an over-enhancement with base extended
smooth area and noise amplification in the image. These short-
comings are avoided and the artifacts in homogeneous area are
minimized, thanks to the Level Adaptive Histogram Equalization
(CLAHE). The algorithm is based on partitioning the image into
equally sized tiles and the histogram equalization is performed
locally. The histogram is clipped at a predefined value then a
cumulative distribution function (CDF) is determined. The con-
trast enhancement for each tile is given by the slope of the CDF.
Artifacts among neighboring tiles are minimized by interpolation
or filtering [26].

4.1.2. Image subdivision

To reduce the complexity of the model and needed computing allo-
cation, we subdivide our input images into 512 × 512 patches. The
image is subdivided into patches images based on grid subdivision
and nuclei density. The first method is based on subdividing the
image into 12 patches. The nuclei based patching method is based
on selecting patches with the entropy edges of the image. A sliding
window process determines the non-overlapped patches with high
entropy.

To reduce the complexity of the model and needed computing allo-
cation, we subdivide our input images into 512 × 12 patches based
on a grid subdivision into 12 patches.

There is no additional verification of the consistency of the sub-
image regarding the diagnosis of the contained regions. For instance
a sub-image obtained from a carcinoma image may contains regions
with normal diagnosis.

Figure 1 Block diagram of the classification pipeline.
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4.1.3. Data augmentation

Data augmentation produces image samples for the learning pro-
cess generated from the available dataset. In case of limited a dataset
and missing generalization cases like different acquisition and dig-
itization processes, the image augmentation is required to ovoid
the classification overfitting. In the presented work, the data aug-
mentation is based on geometric transform including rotation, flip-
ping, and shifting. The intensity of original images are also shifted
to simulate the acquisition process variability. Image shearing aug-
mentation simulated also the physical properties of the breast
tissue. These augmentations could not modify the malignancy cat-
egory nor modify the image diagnosis result.

4.2. Transfer Learning

In handcrafted feature-based methods, the classifiers relay on the
image singularities picked out provided by feature extraction algo-
rithms to extract color region, tissue texture, local and global
features, nulcei-based features, topological and morphological fea-
tures, etc.

Unlikely, the DCNN allows to learn advanced and high-level fea-
tures learned from the training dataset and there is no need to
extract elaborate features before training the classifier. Further-
more DCNN-based approaches achieved high performance com-
pared to handcrafted features-based approaches [27–30]. Using
convolutional layers for feature extraction provides an efficient
field-knowledge for the classification system. Followed by pool-
ing layers, CNNs allow to reduce the field-knowledge needed to
design a classification system. Thus, the performance of these meth-
ods is less biased by the used dataset and similar network architec-
tures can achieve good results on different problems. The DCNNs,
when applied in mammography and histology image processing,
have improved the state-of-the-art results for CAD systems for
BC diagnosis [11,14]. Te generated learning model performance
depends widely on the learning dataset availability. Some classifica-
tion problem have limited dataset and are unable to perform needed
deep learning process. Moreover, data collection is expensive and
may require specific and heavy acquisition process and expert
annotation. Transfer learning aims to use a pre-trained model on
large labelled dataset of a general context in order to overcome
dataset availability problem. Only a minimal training adjustment is
required to fit the new context.

Xception and Inception Resnet V2 are trained on the large Imagenet
dataset [27] that contains over 15 million high-resolution images
belonging to 22,000 categories. The two models have good accuracy
on Imagenet dataset. The structure of the two CNNs is described as
follows:

4.2.1. Inception ResNet architecture

The Inception architecture was first introduced by Szegedy et al.
in 2014 [31], known also as GoogLeNet (Inception V1). The most
recent version is Inception ResNet (Inception V4) delivered in
2016. An Inception model is a stack of building blocks called
Inception modules. Inception modules are similar to convolutional
feature extractors but cross-channel correlations and spatial cor-
relations are decoupled. Inception Resnet V2 is based on the
Inception architecture that have proven to achieve very good

performance and low computational cost. Moreover, Inception
Resnet V2 utilizes residual connections which avoids the degra-
dation problem and reduces the training time compared to fil-
ter concatenation [31]. Compared to inception based architecture
and hybrid inception versions, Inception Resnet V2 has improved
recognition performance by the virtue of residual connections
[31]. In Bianco et al. [32], authors present an in-depth compari-
son between several DNNs. The performances indices are regard-
ing accuracy rate, complexity and computational resources usage
(time, memory). Inception Resnet V2 performs the third best accu-
racy with lower computational complexity compared to NASNET-
A-Large and SENet-154. The results are also similar regarding the
accuracy density that measures how efficiently the model uses its
parameters.

4.2.2. Xception architecture

Xception stands for Extreme Inception, The Xception model is
based on linear stack of depthwise separable convolution lay-
ers where cross-channel correlations and spatial correlations are
entirely decoupled [33]. This model is composed of 36 convolu-
tional layers and each layer includes 14 modules. Each module,
except for the first and last modules, has linear residual connections.

Xception model is among the best architecture regarding the accu-
racy, computational complexity and parameter usage efficiency.
Xception architecture, based on depthwise separable convolution
layers, outperforms VGGNet, Inception-v3, and ResNet [33]. While
NASNET large and Senet-154 outperform all models, the number
of parameters and model complexity is very huge.

4.3. Combining Models and Classification

The two pre-trained CNNs are used for deep feature extraction.
Feature vectors are then reduced separately using the 2D GAPlayer.
GAP layer is used to minimize the number of parameters and
therefore to avoid the overfitting problem. The following figure
explains the dimension reduction principle: each h × w feature map
is replaced by single number computed as the average of [h w]
values.

The resulting feature is an array containing d values where d is the
number of filters. Introduced in [34], GAP replaces the traditional
fully connected layer and provides more accurate classification.
Moreover, the advantage of using GAP layer over a fully connected
layer is the correspondence between feature maps and categories.
GAP can be interpreted as a structural regularizer that explicitly
enforces feature maps to be confidence maps of categories.The
extracted features are concatenated to form 1024-dimensional fea-
ture vector. Since each CNN model captures feature information,
concatenating two feature vectors generated by different models
provide more discriminative representation.

4.3.1. Dropout and bagging

Learning overfitting and training time are common problems in
machine learning and especially in DCCNs. Furthermore, combing
the outputs of separated trained models is computationally expen-
sive [35]. To address these issues,we perform a dropout method
before feeding the concatenated feature vector into the last fully
connected layer.
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Dropout is a technique that addresses the overfitting problem as an
effective regularization and provides a away of combining differ-
ent neural networks models efficiently [36,37]. Dropout is widely
adopted in the training of deep neural networks as an effective reg-
ularization and implicit model ensemble method.. Dropout also
improves the generalization ability as demonstrated in [38]. During
this process, each node is dropped out randomly with a given rate.
The rate can be chosen using a validation set. It can also be set to a
fixed rate, usually 0.5 for retaining the output of the node. This pro-
cess is done only during the training time [37]. Nodes not set to 0
are scaled by (1/(1-rate)) to maintain the same sum over all inputs.

An alternative solution to the dropping is Bagging, known also
as bootstrap aggregating. Bagging is an ensemble learning method
based on training the models on sampling subsets from the train-
ing sets [39] where missing entries are duplicated from the selected
subset. This sampling way will allow different predictors models
that will be used for an aggregate predictor. However, the bagging
requires high computational capabilities as each model needs to be
updated simultaneously.

4.3.2. Densely connected layers

The concatenated features are fed to two dense connected layers
followed by a SoftMax logistic regression layer. The reason behind
using two fully connected layers is to enrich the learning ability

and to adopt the generic features to our histopathology dataset.
Figure 3 illustrates the overall architecture of the proposed network.

In order to combine classification result of the patches, the original
image classification is obtained by two ways:

• Maximum classification probabilities of patches.

• Majority vote of patches labels.

5. RESULTS

In this section, we present the results obtained for the BACH
dataset. The assessment is performed for sub-image classification
and for whole image classification.

5.1. Experimentation Settings

The histological dataset, available at [40], is composed by 400 high-
resolution H&E stained histology microscopy images. The four
classes are equally presented (100 images for each category) and
annotated by two experts pathologists and without any cases of dis-
agreements. Images are.tiff format and have a size of 2048 × 1536
pixels. A pixel represents 0.42 µm × 0.42 µm. Figure 4 highlights the
variability of stain shades.

Figure 2 Global Average Pooling ( GAP) Layer functionality.

Figure 3 Overall architecture.



H. Elmannai et al. / International Journal of Computational Intelligence Systems, in press 7

Figure 4 Samples of hematoxylin and eosin (H&E) microscopic biopsy images from the used dataset (Original images).

The model is used first for classifying 512 × 512 histology sub-
images into four tissue classes (normal, bening, in situ carcinoma,
and invasive carcinoma). The proposed model is trained on 80% of
the training set while 25% of the training set are used for valida-
tion step. The statistics about the training, test and validation for
the sub-images datasets are detailed in Table 1.

Prior to learning and classification steps, the input images are pro-
cessed with the presented preprocessing method. Figure 4 repre-
sents the input image and Figure 5 the preprocessed enhancement
results. Retinex algorithm allows to stretch and correct the illu-
mination and to correct the reflectance which improves the visual
effects. Based on guided filtering, as presented in [41], Retinex
allows edge-preserving ability and solves the problem of over-
enhancement due to unreasonable estimation model of luminance.
After that, the obtained image is processed by CLAHE which
enhances the contrast locally by redistributing the pixel values in
image tiles and bringing out further image singularities. The com-
bination of the two enhancement approaches allow to achieve an
improvement in image contrast of about 58%.

Image data augmentation used to expand the dataset is obtained
using the deep module ImageDataGenerator. This Keras module
generates real-time image samples using the specified parameters.
Batches of tensor image data are generated with real-time data aug-
mentation which allows new variations of the training dataset dur-
ing the training epochs. We specified the following parameters for
the augmentation module: horizontal flip, vertical flip, rotation
range equal to 180 which corresponds to a random rotation angle
between -180 and 180 degrees, width and height shift range of 0.3
which corresponds to the fraction of random shift of the image. We
performs also a a channel shift range of 0.3 that randomly shifts the
channel values and a finite shear transform that stretches the image
at a small angle. We initiate the two DCNNs using the pre-trained
models on ImageNet dataset. We concatenate the obtained feature
maps from the two deep backbones and perform the 2D GAP trans-
form. A dropout of 0.5 prevent the overfitting of the training pro-
cess. Networks weights are updated using an adaptive learning rate
gradient-descent back-propagation algorithm [42]. We selected the
categorical cross-entropy loss function and the adaptive moment
estimation algorithm (Adam) in order to perform the optimization
during the training process. We tried different learning rates (0.001,
0.0001, and 0.00001), the tested batch sizes are 8, 16, and 32. The
tuning process leads to the optimal batch size of 32 and the learn-
ing rate of 0.0001 with a decay of 0.00001. the number of iterations
per epoch is 100. The loss function computes the cross-entropy loss
between the labels and predictions for the training set and the val-
idation set. The training process takes end after the stabilization

Table 1 Datasets statistics for training, validation, and
testing.

Number
of Images

Percentage

Training 2880 60
Validation 960 20
Test 960 20
Total 4800 100

of the four classes which is 60 epochs.The accuracy curves of the
fine-tuned model are illustrated in Figure 6, correspondent loss
curves are presented in Figure 7.

5.2. Sub-images Classification

First, the image classification is performed with sub-images classi-
fier. Then, the image-wise classification is obtained by combining
the patch classification results. The classification efficiency relies on
the extraction of nuclei features and tissue organization. Carcinoma
and non- Carcinoma categories can be separated based on the fea-
tures of the nuclei. Color, shape of the nuclei, density, and variabil-
ity are also determinant for the classification decision. Invasive and
In situ classes are well identified when analyzing the tissue struc-
ture. learning transfer, dataset augmentation will allow to ovoid the
overfitting problem by increasing the dataset and enrich the learn-
ing process.

The sub-images are obtained by subdividing the original whole
image (2048 × 1536) into 12 contiguous and non-overlapping
sub-images of 512 × 512. This subdivision will not impact the fea-
ture extraction process as the nuclei radius ranges for 3 to 11 pix-
els. The sub-images classification prediction for the test dataset is
obtained using the presented deep model. The overall accuracy is
97.29%. Specifically, for the carcinoma cases, the achieved sensitiv-
ity is 99.58%. The confusion matrix for the four malignancy levels is
presented in Table 2. The rows in the confusion matrix refer to the
ground truth image label while the column indicate the classifier
result. The True Positive Rate (TPR) for a specific class represents
respectively the rate of samples correctly identified as belonging to
this class in relation to the current number of samples belonging to
this class. TPR is known also as the classifier sensitivity. The False
Negative Rate (FNR) for a specific class in the rate of the samples
not identified as belonging to this class in relation to the current
number of samples belonging to this class. TPR and False Positive
Rate (FPR) are depicted in Table 3. The sensitivity is above 99% for
carcinoma classes while normal and benign classes achieve a sensi-
tivity of 95%.
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Figure 5 Preprocessed images.

Figure 6 Training and validation
curves of accuracy for the fine-tuned
and trained deep architecture.

Figure 7 Training and validation
curves of loss for the fine-tuned and
rained deep architecture.

Table 2 Confusion matrix for sub-image classification.

Benign 228 (95%) 11 (4.58%) 0 ( 0%) 1 (0.41%)
In situ 1 (0.41%) 238 (99.16%) 1 (0.41%) 0 (0%)

Invasive 0 (0%) 0 (0%) 240 (100%) 0 (0%)
Normal 10 (4.16%) 1 (0.41%) 1 (0.41%) 228 (95%)

5.3. Whole Image Classification

During the whole image subdivision, there is no guarantee that the
patch will include determinant diagnosis information. Therefore,
the fusion process will provide image classification reliability for the
original whole image.

• Classification by maximum probability: the maximum
probability of classified patches decides the image label.

• Classification by majority vote: the label that has the most
accuracy within the twelves sub-images decided the image label.

To reinforce the sensitivity of our approach for carcinoma detection,
the fusion decision unresolved cases (specifically for majority vote)
are resolved in this order: invasive, in situ, benign, and normal. This
mean that in case of having 6 sub-images classified as invasive and
6 subclasses classified as in situ, the final decisions will considerate
the label invasive as final decision. Similarly, in case of probabil-
ity equality in the maximum probability based fusion method, the
fusion method selected the decision with the provided priority. In
fact, sensitivity is of great interest when addressing medical classi-
fication problem, therefore we prioritize malignant classes. As the
proposed CAD is an additional opinion or a pre-diagnosis system,
favoring the carcinoma classification in detriments of normal and
benign decision will reduce the carcinoma false negative.

The whole image classification are detailed in Table 4. The two
fusion approaches lead to an overall accuracy of 100% and 95% for
respectively the majority vote and the maximum probability deci-
sion. In a two problem classification, the cancer cases and non-
cancer cases accuracies achieved respectively 100% and 97.5% by
majority vote. Maximum probability performs worse than major-
ity vote and is not suitable for illness classification problem. The
overall accuracy is better in the whole image classification com-
pared to the overall accuracy for sub-image classification when we
use the majority vote strategy. This is explained by the fact that
the image abnormalities are randomly presented in the image and
the image subdivision is not guided by the presence of abnormali-
ties. Moreover, normal tissue coexists within abnormal cases. The

Table 3 Obtained TPR and FPR for sub-image classification.
Class TPR FPR
Benign 95% 5%
In situ 99.16% 0.83%
Invasive 100 % 0%
Normal 95% 5%
TRP, True Positive Rate.
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sensitivity of our method for cancer cases achieves 100%, and
achieves 95.6% for non-cancer cases by majority vote which is
encouraging for using this approach as a secondary decision system.

5.4. Comparison with Similar Works

In Araújo et al. [22], the authors proposed a CNN and a CNN+SVM
based approach to classify the same dataset. The feature extraction
is performed by the CNN and the extracted features are used for the
two classifiers. The image classification accuracy achieved 77.8%
for four classes, while the achieved sensitivity was 95.6% for cancer
cases. The classification of two classes invasive and noninvasive tis-
sues achieved 83.3%. In the work of Fondon et al. [10], an enhanced
feature extraction approach is presented. Three sets of features were
selected respectively related to the nuclei properties, the color and
the texture. The built feature vector is fed to a quadratic SVM. The
overall accuracy reaches 76% and the sensitivity for cancer cases is
92%. In Yao et al. [43], the authors proposed a parallel structure
that consists of a DCNN and a recurrent neural network for image
feature extraction, then a specific perceptron attention mechanism
is used to unify the derived features. The overall accuracy reaches
97.5%.

The ensemble of fine-tuned VGG-16 and VGG-19 models offered
sensitivity of 97.73it offered an F1 score of 95.29.

The results comparison demonstrate that our model significantly
outperforms state-of-the-art feature-based methods. Moreover, it
performs better than recent deep learning-based methods. In addi-
tion, our approach provided four classes classification and is not
limited to cancer and non-cancer cases. In our dataset, the patch-
wise were obtained by a grid-subdivision and there is no available
specific ground truth for these patches other than the WSI ground
truth. This may lower the patchwize classification accuracy as some
patches may not contain relevant information for the training as
well as for the testing dataset.

6. CONCLUSION AND FUTURE WORK

We proposed a deep architecture for the classification of BC based
on H&E stained histological imagery. The approach provides the
breast imagery classification into normal tissue, benign, in situ car-
cinoma, and invasive carcinoma. The virtue of our architecture is
to provide a new deep architecture based on two deep networks
Xception and Inception Resnet V2. The backbones are pre-trained
on a large dataset to overcome the limited size of available histo-
logical dataset. The extracted features are then reduced using the
two-dimensional GAP layer. A dropout layer allows to reduce the
model complexity and then the features are fed to two densely

Table 4 Whole image classification results.
Class Accuracy Obtained

by Majority Vote (%)
Accuracy Obtained

by Maximum
Probability (%)

Benign 100 95
In situ 100 95
Invasive 100 90
Normal 100 100

connected layers. The virtue of our approaches is to take advan-
tages for two semantic deep features as well as the transfer leaning
method. The obtained model allows to discriminate the nuclei fea-
tures and tissue properties. Compared to existent researches, the
performance of our approach outperforms state-of-the-art meth-
ods. Our approach can be extended for WSIs where image may con-
tain multiple pathology regions.
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